Fire Lane Obstruction Detection

Fire Lane Obstruction Detection

Algorithm Introduction
Algorithm Introduction
Utilizing AI vision recognition technology to accurately monitor non-motorized vehicles occupying fire emergency access routes. When violations are detected within camera coverage areas, the system automatically identifies and outputs corresponding bounding boxes while triggering real-time alerts. This solution is optimized for high-density areas such as residential communities and industrial parks, supporting urban precision governance to eliminate passage obstructions during fire emergencies and other critical incidents.


  • ● Lighting conditions: Minimum 50% bright pixel ratio (pixels with grayscale value >40)
  • ● Image requirements: Optimal resolution of 1920×1080
  • ● Target applicability: Effective for video frames with standard aspect ratios

FAQ

  • Algorithm Accuracy
    All algorithms published on the website claim accuracies above 90 %. However, real-world performance drops can occur for the following reasons:
    (1) Poor imaging quality, such as
    • Strong light, backlight, nighttime, rain, snow, or fog degrading image quality
    • Low resolution, motion blur, lens contamination, compression artifacts, or sensor noise
    • Targets being partially or fully occluded (common in object detection, tracking, and pose estimation)
    (2) The website provides two broad classes of algorithms: general-purpose and long-tail (rare scenes, uncommon object categories, or insufficient training data). Long-tail algorithms typically exhibit weaker generalization.
    (3) Accuracy is not guaranteed in boundary or extreme scenarios.
  • Deployment & Inference
    We offer multiple deployment formats—Models, Applets and SDKs.
    Compatibility has been verified with more than ten domestic chip vendors, including Huawei Ascend, Iluvatar, and Denglin, ensuring full support for China-made CPUs, GPUs, and NPUs to meet high-grade IT innovation requirements.
    For each hardware configuration, we select and deploy a high-accuracy model whose parameter count is optimally matched to the available compute power.
  • How to Customize an Algorithm
    All algorithms showcased on the website come with ready-to-use models and corresponding application examples. If you need further optimization or customization, choose one of the following paths:
    (1) Standard Customization (highest accuracy, longer lead time)
    Requirements discussion → collect valid data (≥1 000 images or ≥100 video clips from your scenario) → custom algorithm development & deployment → acceptance testing
    (2) Rapid Implementation (Monolith:https://monolith.sensefoundry.cn/)
    Monolith provides an intuitive, web-based interface that requires no deep AI expertise. In as little as 30 minutes you can upload data, leverage smart annotation, train, and deploy a high-performance vision model end-to-end—dramatically shortening the algorithm production cycle.
 

SenseFoundry Algorithm Marketplace

Leave a message with your needs and we will contact you as soon as possible.
×