Shared Bicycle Toppling Detection

Shared Bicycle Toppling Detection

Algorithm Introduction
Algorithm Introduction
Utilizing visual analysis technology to detect overturned shared bicycles within designated monitoring areas, assisting maintenance personnel in rapid dispatch and arrangement to ensure road traffic flow and urban cleanliness. The system identifies shared bicycles knocked down beyond user-defined regions of interest (ROI) on road surfaces, with optimal performance in outdoor environments.

  • ● Lighting conditions: Daytime outdoor environments with normal illumination
  • ● Image requirements: Optimal detection performance at 1920×1080 resolution
  • ● Target size: Visually identifiable by human eye; improved detection for clustered overturned bicycles

FAQ

  • Algorithm Accuracy
    All algorithms published on the website claim accuracies above 90 %. However, real-world performance drops can occur for the following reasons:
    (1) Poor imaging quality, such as
    • Strong light, backlight, nighttime, rain, snow, or fog degrading image quality
    • Low resolution, motion blur, lens contamination, compression artifacts, or sensor noise
    • Targets being partially or fully occluded (common in object detection, tracking, and pose estimation)
    (2) The website provides two broad classes of algorithms: general-purpose and long-tail (rare scenes, uncommon object categories, or insufficient training data). Long-tail algorithms typically exhibit weaker generalization.
    (3) Accuracy is not guaranteed in boundary or extreme scenarios.
  • Deployment & Inference
    We offer multiple deployment formats—Models, Applets and SDKs.
    Compatibility has been verified with more than ten domestic chip vendors, including Huawei Ascend, Iluvatar, and Denglin, ensuring full support for China-made CPUs, GPUs, and NPUs to meet high-grade IT innovation requirements.
    For each hardware configuration, we select and deploy a high-accuracy model whose parameter count is optimally matched to the available compute power.
  • How to Customize an Algorithm
    All algorithms showcased on the website come with ready-to-use models and corresponding application examples. If you need further optimization or customization, choose one of the following paths:
    (1) Standard Customization (highest accuracy, longer lead time)
    Requirements discussion → collect valid data (≥1 000 images or ≥100 video clips from your scenario) → custom algorithm development & deployment → acceptance testing
    (2) Rapid Implementation (Monolith:https://monolith.sensefoundry.cn/)
    Monolith provides an intuitive, web-based interface that requires no deep AI expertise. In as little as 30 minutes you can upload data, leverage smart annotation, train, and deploy a high-performance vision model end-to-end—dramatically shortening the algorithm production cycle.
 

SenseFoundry Algorithm Marketplace

Leave a message with your needs and we will contact you as soon as possible.
×